Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking.

نویسندگان

  • Ning Ding
  • Xiangfeng Chen
  • Chi-Man Lawrence Wu
  • Hui Li
چکیده

The adsorption of hydrogen-bonded and stacked nucleobase pairs on the hexagonal boron nitride (h-BN) surface was studied by density functional theory and molecular dynamics methods. Eight types of nucleobase pairs (i.e., GG, AA, TT, CC, UU, AT, GC, and AU) were chosen as the adsorbates. The adsorption configurations, interaction energies, and electronic properties of the nucleobase pair on the h-BN surface were obtained and compared. The density of states analysis result shows that both the hydrogen-bonded and stacked nucleobase pairs were physisorbed on h-BN with minimal charge transfer. The hydrogen-bonded base pairs lying on the h-BN surface are significantly more stable than the stacked forms in both the gas and water phase. The molecular dynamics simulation result indicates that h-BN possessed high sensitivity for the nucleobases and the h-BN surface adsorption could revert the base pair interaction from stacking back to hydrogen bonding in aqueous environment. The h-BN surface could immobilize the nucleobases on its surface, which suggests the use of h-BN has good potential in DNA/RNA detection biosensors and self-assembly nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.

Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the...

متن کامل

Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective.

The adsorption of choline benzoate ([CH][BE]) ionic liquid (IL) on the surface of different hexagonal nanosheets has been studied using Density Functional Theory (DFT) methods. For this, the interaction mechanism, binding energies and electronic structure of [CH][BE] ionic liquid on four types of nanosheets, i.e., graphene, silicene, germanene and boron-nitride, were estimated and compared. The...

متن کامل

Wetting and prewetting of water on top of a single sheet of hexagonal boron nitride.

Wetting of a single hexagonal boron nitride sheet by liquid water has been investigated by molecular dynamics simulations within a temperature range between 278 and 373 K. The wetting temperature was found to be ~310 K, while the onset of prewetting happens around the much higher temperature of 354 K. The static (hydrogen-bond populations, density profiles, energy per molecule) and dynamic (dif...

متن کامل

Molecular Simulation of Hydrogen Adsorption onto Single-Walled Carbon and Boron-Nitride Nano-Cones

In this paper, we have studied the hydrogen adsorption onto CNCs and BNNCs nano-cones using GCMC simulations. The effects of length and cone apex angle on adsorption property have been investigated. Our results show that with increasing the pressure and decreasing the cone length and cone apex angle except for CNC-300˚, the hydrogen adsorption onto the BNNCs and CNCs was increased. It was also ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 26  شماره 

صفحات  -

تاریخ انتشار 2013